Prof. Dr. Peter Koepke, Dr. Philipp Schlicht	Problem sheet 12
--	------------------

Problem 43 (4 Points). If $T \subseteq {}^{<\omega}2$ is a tree, the n^{th} splitting level $\operatorname{split}_n(T)$ of T is defined as the set of nodes $s \in T$ such that

(1) s is a *splitting node*, i.e. s has two incompatible direct successors.

(2) s is minimal such that there is no $t \in \bigcup_{i < n} \operatorname{split}_i(T)$ with $s \leq t$.

Then $\operatorname{split}(T) := \bigcup_{n \in \omega} \operatorname{split}_n(T)$ is the set of splitting nodes in T.

A tree $T \subseteq {}^{<\omega}2$ is called *perfect* if $\operatorname{split}(T)$ is cofinal in T. Sacks forcing \mathbb{S} is the forcing whose conditions are perfect trees $T \subseteq {}^{<\omega}2$, ordered by $S \leq T :\Leftrightarrow S \subseteq T$. Let $S \leq_n T$ for $S, T \in \mathbb{S}$ if $S \leq T$ and $\operatorname{split}_i(S) = \operatorname{split}_i(T)$ for all i < n.

Show that Sacks forcing with $(\leq_n)_{n\in\omega}$ satisfies the fusion condition for Axiom A in Problem 41 (i).

Problem 44 (8 Points). Suppose that P is a forcing and $p \in P$. Consider the following game G'(P,p) for two players with ω moves. In round n, player I plays a maximal antichain A_n in P and then player II responds by playing countable sets $B_0^n \subseteq A_0, \ldots, B_n^n \subseteq A_n$. Player II wins if there is a condition $q \leq p$ such that for all $n \in \omega$, the set $\bigcup_{n \leq m \in \omega} B_n^m$ is predense below q.

Show that Player II has a winning stategy for G'(P, p) if and only if for all cardinals λ , player II has a winning strategy for the game $G_{\lambda}(P, p)$ in Problem 46.

(Hint: Suppose that player II has a winning strategy in G'(P,p). We consider a run of $G_{\lambda}(P,p)$. When player I plays $\dot{\alpha}_n$ in $G_{\lambda}(P,p)$, choose a maximal antichain A_n such that every $p \in A_n$ decides $\dot{\alpha}_n$. Let player I play A_n in G'(P,p) and as the next move for II in $G_{\lambda}(P,p)$, construct a set of ordinals from the answer of II in G'(P,p).

For the other implication, suppose that $(P, <_P, 1_P) = (\mu, <_P, 1_P)$ and let $\lambda = \max\{\mu^+, \omega\}$. Suppose that player II has a winning strategy in $G_{\lambda}(P, p)$. We consider a run of G'(P, p). When player I plays A_n in G'(P, p), let player I play $\dot{\alpha}_n := \{(\check{\beta}, \alpha) \mid \alpha \in A_n, \ \beta < \mu \cdot n + \alpha\}$. If the answer of II in $G_{\lambda}(P, p)$ is C_n , let II play $B_k^n = \{\alpha < \mu \mid \alpha \in A_k, \ \mu \cdot k + \alpha \in C_n\}$ for $k \leq n$ in G'(P, p).

Show that these instructions define winning strategies for II in $G_{\lambda}(P,p)$ and G'(P,p), respectively.)

Problem 45 (6 Points). Suppose that P is a forcing and player II has a winning strategy in G'(P,p) for all $p \in P$. Show that P is proper.

(Hint: Suppose that σ is a winning strategy for player II, and let λ be sufficiently large with $\sigma \in H_{\lambda}$. Show that for every $M \prec H_{\lambda}$ with $P, p, \sigma \in M$ there is an (M, P)-generic condition $q \leq p$, by defining a run of G'(P, p) in which I plays all maximal antichains $A \in M$.)

Please hand in your solutions on Wednesday, January 29 before the lecture.